Building on ARKOS
Extensible Platform Architecture
Custom Agent Development
Extension Development
# Custom ARKOS Agent Development Framework
from arkos.agent import BaseAgent, AgentCapability
from arkos.coordination import AgentCoordinator
from arkos.learning import LearningEngine
from arkos.security import SecurityContext
from typing import Dict, List, Any, Optional
import asyncio
class CustomDomainAgent(BaseAgent):
"""
Example custom agent for specialized domain requirements.
Demonstrates ARKOS agent development patterns and best practices.
"""
def __init__(self, config: Dict[str, Any]):
super().__init__(
name="custom-domain-agent",
version="1.0.0",
capabilities=[
AgentCapability.ANALYSIS,
AgentCapability.AUTOMATION,
AgentCapability.OPTIMIZATION,
AgentCapability.LEARNING
],
config=config
)
# Initialize custom components
self.domain_analyzer = DomainSpecificAnalyzer(config)
self.custom_optimizer = CustomOptimizer(config)
self.integration_manager = IntegrationManager(config)
async def initialize(self) -> bool:
"""
Initialize agent with ARKOS ecosystem integration.
"""
try:
# Register with agent coordinator
await self.coordinator.register_agent(
agent=self,
capabilities=self.capabilities,
dependencies=self.get_dependencies()
)
# Initialize learning engine
await self.learning_engine.initialize(
domain="custom_domain",
learning_rate=self.config.get('learning_rate', 'adaptive'),
model_type=self.config.get('model_type', 'transformer')
)
# Setup security context
await self.security_context.initialize(
permissions=self.get_required_permissions(),
encryption_requirements=self.get_encryption_requirements()
)
# Initialize domain-specific components
await self.domain_analyzer.initialize()
await self.custom_optimizer.initialize()
await self.integration_manager.initialize()
self.logger.info("Custom domain agent initialized successfully")
return True
except Exception as e:
self.logger.error(f"Failed to initialize custom agent: {str(e)}")
return False
async def process_request(self, request: Dict[str, Any]) -> Dict[str, Any]:
"""
Process incoming requests with domain-specific logic.
"""
try:
# Validate request with security context
if not await self.security_context.validate_request(request):
return self.create_error_response("Unauthorized request")
# Analyze request context
context = await self.analyze_request_context(request)
# Coordinate with other agents if needed
coordination_result = await self.coordinate_with_agents(context)
# Execute domain-specific processing
processing_result = await self.execute_domain_processing(
request, context, coordination_result
)
# Learn from processing results
await self.learning_engine.record_interaction(
request=request,
context=context,
result=processing_result,
feedback=request.get('feedback')
)
return self.create_success_response(processing_result)
except Exception as e:
self.logger.error(f"Request processing failed: {str(e)}")
return self.create_error_response(str(e))
async def coordinate_with_agents(self, context: Dict[str, Any]) -> Dict[str, Any]:
"""
Coordinate with other ARKOS agents based on request context.
"""
coordination_requests = []
# Determine which agents to coordinate with
if context.get('requires_code_analysis'):
coordination_requests.append({
'agent': 'nexus',
'action': 'analyze_code_quality',
'data': context.get('code_data')
})
if context.get('requires_security_check'):
coordination_requests.append({
'agent': 'aegis',
'action': 'security_analysis',
'data': context.get('security_data')
})
if context.get('requires_infrastructure'):
coordination_requests.append({
'agent': 'oracle',
'action': 'resource_analysis',
'data': context.get('infrastructure_data')
})
# Execute coordination requests
coordination_results = await self.coordinator.execute_coordinated_requests(
requests=coordination_requests,
timeout=self.config.get('coordination_timeout', 30)
)
return coordination_results
async def execute_domain_processing(
self,
request: Dict[str, Any],
context: Dict[str, Any],
coordination_result: Dict[str, Any]
) -> Dict[str, Any]:
"""
Execute domain-specific processing logic.
"""
# Custom domain analysis
analysis_result = await self.domain_analyzer.analyze(
data=request.get('data'),
context=context,
coordination_input=coordination_result
)
# Apply domain-specific optimizations
optimization_result = await self.custom_optimizer.optimize(
analysis=analysis_result,
constraints=request.get('constraints', {}),
objectives=request.get('objectives', {})
)
# Execute custom integrations
integration_result = await self.integration_manager.execute_integrations(
optimization=optimization_result,
target_systems=request.get('target_systems', [])
)
return {
'analysis': analysis_result,
'optimization': optimization_result,
'integration': integration_result,
'recommendations': await self.generate_recommendations(
analysis_result, optimization_result, integration_result
)
}
async def learn_from_feedback(self, feedback: Dict[str, Any]) -> None:
"""
Incorporate user feedback into learning system.
"""
await self.learning_engine.process_feedback(
feedback_data=feedback,
context=feedback.get('context'),
outcome=feedback.get('outcome')
)
# Update custom components based on learning
await self.domain_analyzer.update_from_learning()
await self.custom_optimizer.update_from_learning()
def get_dependencies(self) -> List[str]:
"""Define dependencies on other agents"""
return ['nexus', 'aegis', 'oracle'] # Customize based on needs
def get_required_permissions(self) -> List[str]:
"""Define required permissions for agent operation"""
return [
'read_project_data',
'execute_analysis',
'coordinate_with_agents',
'write_optimization_results'
]
class DomainSpecificAnalyzer:
"""Custom analyzer for specialized domain requirements"""
def __init__(self, config: Dict[str, Any]):
self.config = config
self.analysis_models = {}
async def initialize(self):
"""Initialize domain-specific analysis capabilities"""
# Load custom models, rules, and patterns
pass
async def analyze(
self,
data: Any,
context: Dict[str, Any],
coordination_input: Dict[str, Any]
) -> Dict[str, Any]:
"""Execute domain-specific analysis"""
# Implement custom analysis logic
return {
'analysis_type': 'domain_specific',
'findings': [],
'confidence': 0.95,
'recommendations': []
}
class CustomOptimizer:
"""Custom optimization engine for specialized requirements"""
def __init__(self, config: Dict[str, Any]):
self.config = config
async def initialize(self):
"""Initialize optimization engine"""
pass
async def optimize(
self,
analysis: Dict[str, Any],
constraints: Dict[str, Any],
objectives: Dict[str, Any]
) -> Dict[str, Any]:
"""Execute custom optimization logic"""
return {
'optimization_type': 'custom_domain',
'improvements': [],
'estimated_impact': {},
'implementation_plan': []
}
# Agent registration and deployment
async def deploy_custom_agent():
"""Deploy custom agent to ARKOS platform"""
config = {
'learning_rate': 'adaptive',
'coordination_timeout': 30,
'custom_parameters': {
'domain_specific_setting': 'value'
}
}
agent = CustomDomainAgent(config)
# Initialize and register agent
if await agent.initialize():
print("Custom agent deployed successfully")
return agent
else:
print("Failed to deploy custom agent")
return None
# Usage example
async def main():
custom_agent = await deploy_custom_agent()
if custom_agent:
# Process a custom request
request = {
'type': 'domain_analysis',
'data': {'custom_data': 'value'},
'objectives': {'optimize_for': 'performance'},
'target_systems': ['system1', 'system2']
}
result = await custom_agent.process_request(request)
print(f"Processing result: {result}")
if __name__ == "__main__":
asyncio.run(main())Workflow Customization
API Extension Framework
Plugin Architecture
Data Integration Framework
Last updated

