Nexus
The Autonomous Code Architect
Core Capabilities
Advanced Code Generation
# Nexus-generated microservice with comprehensive optimization
from typing import Optional, Dict, Any, List
import asyncio
from datetime import datetime, timedelta
from dataclasses import dataclass
import logging
from arkos_nexus import auto_optimize, cache_strategy, monitoring, security
@dataclass
class ProcessingMetrics:
"""Metrics tracking for processing operations"""
requests_processed: int = 0
average_response_time: float = 0.0
error_rate: float = 0.0
cache_hit_rate: float = 0.0
class UserAnalyticsProcessor:
"""
Nexus-generated microservice for user analytics processing.
Includes automatic optimization, monitoring, and security features.
"""
def __init__(self, config: Dict[str, Any]):
self.config = config
self.rate_limiter = self._setup_rate_limiter()
self.metrics = ProcessingMetrics()
self.logger = self._setup_logging()
@auto_optimize(
performance=True,
security=True,
monitoring=True,
cache_strategy="intelligent"
)
@security.require_authentication
@monitoring.track_performance
async def process_user_analytics(
self,
user_id: str,
analytics_data: Dict[str, Any],
processing_options: Optional[Dict[str, Any]] = None
) -> Dict[str, Any]:
"""
Process user analytics with comprehensive optimization and error handling.
Args:
user_id: Unique identifier for the user
analytics_data: Raw analytics data to process
processing_options: Optional processing configuration
Returns:
Processed analytics with metadata and performance metrics
"""
start_time = datetime.utcnow()
try:
# Rate limiting with user-specific quotas
await self._check_rate_limits(user_id)
# Input validation with schema verification
validated_data = await self._validate_analytics_data(
analytics_data,
user_id
)
# Cache lookup with intelligent key generation
cache_key = self._generate_cache_key(user_id, validated_data)
cached_result = await cache_strategy.get(cache_key)
if cached_result and self._is_cache_valid(cached_result):
self._update_metrics('cache_hit')
return self._format_cached_response(cached_result, start_time)
# Process data with optimized algorithms
processed_data = await self._execute_analytics_processing(
user_id,
validated_data,
processing_options or {}
)
# Apply business rules and transformations
enriched_data = await self._apply_business_rules(
processed_data,
user_id
)
# Cache results with intelligent TTL
await cache_strategy.set(
cache_key,
enriched_data,
ttl=self._calculate_cache_ttl(enriched_data)
)
# Update metrics and monitoring
processing_time = (datetime.utcnow() - start_time).total_seconds()
self._update_metrics('success', processing_time)
return {
'success': True,
'data': enriched_data,
'metadata': {
'user_id': user_id,
'processing_time': processing_time,
'processed_at': datetime.utcnow().isoformat(),
'version': self.config.get('service_version', '1.0.0')
}
}
except ValidationError as e:
self.logger.warning(f"Validation failed for user {user_id}: {e}")
self._update_metrics('validation_error')
return self._format_error_response('VALIDATION_ERROR', str(e))
except RateLimitExceeded as e:
self.logger.info(f"Rate limit exceeded for user {user_id}")
self._update_metrics('rate_limit_exceeded')
return self._format_error_response('RATE_LIMIT_EXCEEDED', str(e))
except Exception as e:
self.logger.error(f"Unexpected error processing analytics for user {user_id}: {e}")
self._update_metrics('unexpected_error')
return self._format_error_response('PROCESSING_ERROR', 'Internal processing error')
async def _execute_analytics_processing(
self,
user_id: str,
data: Dict[str, Any],
options: Dict[str, Any]
) -> Dict[str, Any]:
"""Execute core analytics processing with optimization"""
# Determine optimal processing strategy
processing_strategy = self._select_processing_strategy(data, options)
if processing_strategy == 'batch':
return await self._batch_process_analytics(user_id, data)
elif processing_strategy == 'stream':
return await self._stream_process_analytics(user_id, data)
else:
return await self._standard_process_analytics(user_id, data)
def _select_processing_strategy(
self,
data: Dict[str, Any],
options: Dict[str, Any]
) -> str:
"""Nexus-optimized strategy selection based on data characteristics"""
data_size = len(str(data))
complexity_score = self._calculate_complexity_score(data)
if data_size > 1000000 or complexity_score > 0.8:
return 'batch'
elif options.get('real_time', False) and complexity_score < 0.3:
return 'stream'
else:
return 'standard'Refactoring Excellence
Learning and Adaptation
Integration Capabilities
Last updated

