Oracle
The Infrastructure Prophet
Predictive Resource Management
Multi-Cloud Optimization
# Oracle Infrastructure Optimization Framework
from typing import Dict, List, Optional, Any
import asyncio
from datetime import datetime, timedelta
from dataclasses import dataclass
from enum import Enum
class CloudProvider(Enum):
AWS = "aws"
AZURE = "azure"
GCP = "gcp"
HYBRID = "hybrid"
@dataclass
class ResourcePrediction:
"""Oracle-generated resource prediction with confidence metrics"""
timestamp: datetime
resource_type: str
predicted_usage: float
confidence_level: float
cost_impact: float
scaling_recommendation: str
class OracleInfrastructureOptimizer:
"""
Comprehensive infrastructure optimization powered by Oracle's predictive intelligence.
Handles multi-cloud deployments, cost optimization, and performance tuning.
"""
def __init__(self, config: Dict[str, Any]):
self.config = config
self.cloud_providers = self._initialize_cloud_providers()
self.cost_optimizer = self._initialize_cost_optimizer()
self.performance_monitor = self._initialize_performance_monitor()
self.prediction_engine = self._initialize_prediction_engine()
async def optimize_infrastructure(self) -> Dict[str, Any]:
"""
Comprehensive infrastructure optimization orchestration.
Oracle analyzes, predicts, and implements optimizations automatically.
"""
# Gather comprehensive infrastructure data
current_state = await self._analyze_current_infrastructure()
# Generate usage predictions
predictions = await self._generate_usage_predictions(
historical_data=current_state['historical_usage'],
business_calendar=await self._get_business_calendar(),
growth_projections=await self._get_growth_projections()
)
# Analyze cost optimization opportunities
cost_optimizations = await self._analyze_cost_optimizations(
current_state, predictions
)
# Performance optimization analysis
performance_optimizations = await self._analyze_performance_optimizations(
current_state, predictions
)
# Generate comprehensive recommendations
recommendations = await self._generate_optimization_recommendations(
current_state, predictions, cost_optimizations, performance_optimizations
)
# Implement approved optimizations
implementation_results = await self._implement_optimizations(recommendations)
return {
'current_state': current_state,
'predictions': predictions,
'optimizations_implemented': implementation_results,
'projected_savings': self._calculate_projected_savings(recommendations),
'performance_improvements': self._calculate_performance_improvements(recommendations)
}
async def _analyze_current_infrastructure(self) -> Dict[str, Any]:
"""Comprehensive analysis of current infrastructure state"""
analysis = {
'compute_resources': await self._analyze_compute_resources(),
'storage_utilization': await self._analyze_storage_utilization(),
'network_performance': await self._analyze_network_performance(),
'database_performance': await self._analyze_database_performance(),
'cost_breakdown': await self._analyze_cost_breakdown(),
'security_posture': await self._analyze_security_posture(),
'compliance_status': await self._analyze_compliance_status()
}
return analysis
async def _generate_usage_predictions(
self,
historical_data: Dict[str, Any],
business_calendar: Dict[str, Any],
growth_projections: Dict[str, Any]
) -> List[ResourcePrediction]:
"""
Generate sophisticated usage predictions using multiple data sources.
Oracle considers historical patterns, business events, and growth projections.
"""
predictions = []
# Analyze historical usage patterns
usage_patterns = await self._analyze_usage_patterns(historical_data)
# Factor in business calendar events
business_impact = await self._calculate_business_impact(
business_calendar, usage_patterns
)
# Apply growth projections
growth_adjusted_predictions = await self._apply_growth_projections(
usage_patterns, growth_projections
)
# Generate predictions for different time horizons
time_horizons = ['1h', '6h', '24h', '7d', '30d', '90d']
for horizon in time_horizons:
for resource_type in ['cpu', 'memory', 'storage', 'network']:
prediction = await self._predict_resource_usage(
resource_type=resource_type,
time_horizon=horizon,
usage_patterns=usage_patterns,
business_impact=business_impact,
growth_factors=growth_adjusted_predictions
)
predictions.append(prediction)
return predictions
async def _analyze_cost_optimizations(
self,
current_state: Dict[str, Any],
predictions: List[ResourcePrediction]
) -> Dict[str, Any]:
"""
Identify cost optimization opportunities across all cloud resources.
"""
optimizations = {
'right_sizing': await self._identify_right_sizing_opportunities(current_state),
'reserved_capacity': await self._analyze_reserved_capacity_opportunities(predictions),
'spot_instances': await self._evaluate_spot_instance_opportunities(current_state),
'storage_optimization': await self._analyze_storage_optimization(current_state),
'network_optimization': await self._analyze_network_cost_optimization(current_state),
'unused_resources': await self._identify_unused_resources(current_state)
}
# Calculate potential savings for each optimization
for optimization_type, opportunities in optimizations.items():
for opportunity in opportunities:
opportunity['potential_savings'] = await self._calculate_potential_savings(
opportunity, current_state
)
opportunity['implementation_effort'] = await self._estimate_implementation_effort(
opportunity
)
opportunity['risk_level'] = await self._assess_optimization_risk(opportunity)
return optimizations
async def _implement_optimizations(
self,
recommendations: Dict[str, Any]
) -> Dict[str, Any]:
"""
Implement approved optimizations with comprehensive safety measures.
"""
implementation_results = {
'successful_implementations': [],
'failed_implementations': [],
'pending_approvals': [],
'rollbacks_performed': []
}
# Prioritize implementations by impact and risk
prioritized_recommendations = await self._prioritize_recommendations(recommendations)
for recommendation in prioritized_recommendations:
try:
# Pre-implementation validation
validation_result = await self._validate_implementation(recommendation)
if not validation_result['safe_to_proceed']:
implementation_results['pending_approvals'].append({
'recommendation': recommendation,
'validation_concerns': validation_result['concerns']
})
continue
# Create implementation checkpoint
checkpoint = await self._create_implementation_checkpoint(recommendation)
# Execute implementation
implementation_result = await self._execute_implementation(recommendation)
# Verify implementation success
verification_result = await self._verify_implementation(
recommendation, implementation_result
)
if verification_result['success']:
implementation_results['successful_implementations'].append({
'recommendation': recommendation,
'result': implementation_result,
'savings_realized': verification_result['savings_realized'],
'performance_impact': verification_result['performance_impact']
})
else:
# Rollback failed implementation
rollback_result = await self._rollback_implementation(
recommendation, checkpoint
)
implementation_results['rollbacks_performed'].append({
'recommendation': recommendation,
'rollback_result': rollback_result
})
except Exception as e:
implementation_results['failed_implementations'].append({
'recommendation': recommendation,
'error': str(e),
'timestamp': datetime.utcnow()
})
return implementation_results
async def _predict_resource_usage(
self,
resource_type: str,
time_horizon: str,
usage_patterns: Dict[str, Any],
business_impact: Dict[str, Any],
growth_factors: Dict[str, Any]
) -> ResourcePrediction:
"""
Sophisticated resource usage prediction using multiple machine learning models.
"""
# Base prediction from historical patterns
base_prediction = await self._calculate_base_prediction(
resource_type, time_horizon, usage_patterns
)
# Apply business calendar adjustments
business_adjusted = await self._apply_business_adjustments(
base_prediction, business_impact, time_horizon
)
# Factor in growth projections
growth_adjusted = await self._apply_growth_adjustments(
business_adjusted, growth_factors, time_horizon
)
# Calculate confidence level based on data quality and model accuracy
confidence_level = await self._calculate_prediction_confidence(
resource_type, time_horizon, usage_patterns
)
# Estimate cost impact
cost_impact = await self._estimate_cost_impact(
growth_adjusted, resource_type, time_horizon
)
# Generate scaling recommendation
scaling_recommendation = await self._generate_scaling_recommendation(
growth_adjusted, confidence_level, cost_impact
)
return ResourcePrediction(
timestamp=datetime.utcnow() + self._parse_time_horizon(time_horizon),
resource_type=resource_type,
predicted_usage=growth_adjusted,
confidence_level=confidence_level,
cost_impact=cost_impact,
scaling_recommendation=scaling_recommendation
)Cost Optimization Excellence
Performance Monitoring and Optimization
Disaster Recovery and Business Continuity
Last updated

