Sentinel
The Quality Guardian
Comprehensive Test Generation
Advanced Test Suite Architecture
# Sentinel-generated comprehensive test framework
import pytest
import asyncio
from unittest.mock import Mock, patch, AsyncMock
from datetime import datetime, timedelta
import json
from dataclasses import dataclass
from typing import List, Dict, Any, Optional
@dataclass
class TestScenario:
"""Sentinel-generated test scenario with metadata"""
name: str
description: str
category: str
risk_level: str
business_impact: str
expected_frequency: str
class SentinelTestFramework:
"""
Comprehensive testing framework generated by Sentinel.
Includes edge case detection, performance validation, and business logic testing.
"""
@pytest.fixture(scope="session")
def test_environment(self):
"""Setup isolated test environment with realistic data"""
return {
'database': self._create_test_database(),
'cache': self._create_test_cache(),
'external_services': self._setup_service_mocks(),
'user_sessions': self._generate_test_sessions()
}
@pytest.fixture
def payment_processor(self, test_environment):
"""Payment processor with test configuration"""
return PaymentProcessor(
config={
'database_url': test_environment['database']['url'],
'cache_url': test_environment['cache']['url'],
'timeout': 30,
'retry_attempts': 3,
'rate_limit': 1000,
'test_mode': True
}
)
class TestPaymentProcessingEdgeCases:
"""
Sentinel-identified edge cases for payment processing.
These scenarios are based on real-world failure patterns and user behavior analysis.
"""
@pytest.mark.parametrize("edge_case_scenario", [
TestScenario(
name="concurrent_payments_same_user",
description="Multiple simultaneous payments from same user",
category="concurrency",
risk_level="high",
business_impact="duplicate_charges",
expected_frequency="daily"
),
TestScenario(
name="payment_during_maintenance",
description="Payment attempt during system maintenance",
category="availability",
risk_level="medium",
business_impact="customer_frustration",
expected_frequency="monthly"
),
TestScenario(
name="extremely_large_payment",
description="Payment exceeding normal business limits",
category="business_logic",
risk_level="high",
business_impact="fraud_risk",
expected_frequency="rare"
),
TestScenario(
name="malformed_payment_data",
description="Invalid or corrupted payment information",
category="data_validation",
risk_level="medium",
business_impact="system_stability",
expected_frequency="weekly"
),
TestScenario(
name="gateway_cascade_failure",
description="Multiple payment gateways failing simultaneously",
category="infrastructure",
risk_level="critical",
business_impact="revenue_loss",
expected_frequency="yearly"
)
])
async def test_payment_edge_cases(self, payment_processor, edge_case_scenario, test_environment):
"""
Comprehensive edge case testing based on Sentinel analysis.
Each test scenario includes realistic failure simulation and recovery validation.
"""
if edge_case_scenario.name == "concurrent_payments_same_user":
await self._test_concurrent_payments(payment_processor, test_environment)
elif edge_case_scenario.name == "payment_during_maintenance":
await self._test_maintenance_mode_payment(payment_processor, test_environment)
elif edge_case_scenario.name == "extremely_large_payment":
await self._test_large_payment_handling(payment_processor, test_environment)
elif edge_case_scenario.name == "malformed_payment_data":
await self._test_malformed_data_handling(payment_processor, test_environment)
elif edge_case_scenario.name == "gateway_cascade_failure":
await self._test_gateway_cascade_failure(payment_processor, test_environment)
async def _test_concurrent_payments(self, processor, env):
"""Test handling of concurrent payment attempts from same user"""
user_id = "user_concurrent_test"
payment_data = {
'amount': 99.99,
'currency': 'USD',
'user_id': user_id,
'payment_method': 'credit_card'
}
# Launch 5 concurrent payment attempts
tasks = []
for i in range(5):
payment_copy = payment_data.copy()
payment_copy['idempotency_key'] = f"concurrent_test_{i}"
tasks.append(processor.process_payment(payment_copy))
results = await asyncio.gather(*tasks, return_exceptions=True)
# Verify idempotency - only one payment should succeed
successful_payments = [r for r in results if hasattr(r, 'success') and r.success]
assert len(successful_payments) == 1, "Multiple concurrent payments succeeded"
# Verify proper error handling for duplicates
duplicate_errors = [r for r in results if hasattr(r, 'error_code') and r.error_code == 'DUPLICATE_PAYMENT']
assert len(duplicate_errors) == 4, "Duplicate detection failed"
async def _test_gateway_cascade_failure(self, processor, env):
"""Test system behavior when all payment gateways fail"""
# Simulate all gateways failing
with patch.multiple(
'payment_gateways',
stripe_gateway=AsyncMock(side_effect=Exception("Service unavailable")),
paypal_gateway=AsyncMock(side_effect=Exception("Service unavailable")),
square_gateway=AsyncMock(side_effect=Exception("Service unavailable"))
):
payment_data = {
'amount': 149.99,
'currency': 'USD',
'user_id': 'user_cascade_test',
'payment_method': 'credit_card'
}
result = await processor.process_payment(payment_data)
# Should gracefully degrade to manual processing queue
assert result.status == 'queued_for_manual_processing'
assert result.estimated_processing_time is not None
assert 'temporary service disruption' in result.user_message.lower()
# Verify customer notification was sent
notifications = env['external_services']['notification_service'].call_history
assert any('payment delay' in str(call) for call in notifications)
class TestPerformanceValidation:
"""
Sentinel-generated performance tests based on system analysis and usage patterns.
"""
@pytest.mark.performance
async def test_payment_processing_under_load(self, payment_processor):
"""Validate payment processing performance under realistic load"""
# Generate realistic load pattern based on Sentinel analysis
payment_requests = self._generate_realistic_payment_load(1000)
start_time = datetime.utcnow()
# Process payments with controlled concurrency
semaphore = asyncio.Semaphore(50) # Max 50 concurrent requests
async def process_with_semaphore(payment_data):
async with semaphore:
return await payment_processor.process_payment(payment_data)
results = await asyncio.gather(
*[process_with_semaphore(payment) for payment in payment_requests],
return_exceptions=True
)
processing_time = (datetime.utcnow() - start_time).total_seconds()
# Performance assertions based on SLA requirements
assert processing_time < 120, f"Processing took {processing_time}s, expected < 120s"
successful_payments = [r for r in results if hasattr(r, 'success') and r.success]
success_rate = len(successful_payments) / len(payment_requests)
assert success_rate >= 0.99, f"Success rate {success_rate:.2%} below 99% threshold"
# Response time distribution analysis
response_times = [r.processing_time for r in successful_payments if hasattr(r, 'processing_time')]
avg_response_time = sum(response_times) / len(response_times)
p95_response_time = sorted(response_times)[int(len(response_times) * 0.95)]
assert avg_response_time < 2.0, f"Average response time {avg_response_time:.2f}s > 2.0s"
assert p95_response_time < 5.0, f"P95 response time {p95_response_time:.2f}s > 5.0s"
def _generate_realistic_payment_load(self, count: int) -> List[Dict[str, Any]]:
"""Generate realistic payment data based on actual usage patterns"""
import random
# Payment amount distribution based on real data analysis
amount_distribution = [
(0.4, lambda: round(random.uniform(5, 50), 2)), # Small purchases
(0.3, lambda: round(random.uniform(50, 200), 2)), # Medium purchases
(0.2, lambda: round(random.uniform(200, 1000), 2)), # Large purchases
(0.1, lambda: round(random.uniform(1000, 5000), 2)) # Premium purchases
]
payments = []
for i in range(count):
# Select amount based on distribution
rand = random.random()
cumulative = 0
for prob, amount_func in amount_distribution:
cumulative += prob
if rand <= cumulative:
amount = amount_func()
break
payments.append({
'amount': amount,
'currency': random.choice(['USD', 'EUR', 'GBP']),
'user_id': f'load_test_user_{i % 100}', # Simulate 100 different users
'payment_method': random.choice(['credit_card', 'debit_card', 'paypal']),
'idempotency_key': f'load_test_{i}_{datetime.utcnow().timestamp()}'
})
return payments
class TestBusinessLogicValidation:
"""
Sentinel-generated tests for business logic validation and compliance.
"""
@pytest.mark.business_logic
async def test_fraud_detection_integration(self, payment_processor):
"""Validate fraud detection triggers and responses"""
# Test suspicious payment patterns identified by Sentinel
suspicious_scenarios = [
{
'name': 'rapid_succession_payments',
'payments': [
{'amount': 999.99, 'user_id': 'user_fraud_test', 'delay': 0},
{'amount': 999.99, 'user_id': 'user_fraud_test', 'delay': 1},
{'amount': 999.99, 'user_id': 'user_fraud_test', 'delay': 2}
],
'expected_trigger': True
},
{
'name': 'unusual_amount_pattern',
'payments': [
{'amount': 9999.99, 'user_id': 'user_normal', 'delay': 0}
],
'expected_trigger': True
},
{
'name': 'normal_payment_pattern',
'payments': [
{'amount': 49.99, 'user_id': 'user_normal', 'delay': 0}
],
'expected_trigger': False
}
]
for scenario in suspicious_scenarios:
fraud_alerts = []
# Monitor fraud detection system
with patch('fraud_detection.alert_system.send_alert') as mock_alert:
mock_alert.side_effect = lambda alert: fraud_alerts.append(alert)
# Execute payment scenario
for payment_config in scenario['payments']:
if payment_config['delay'] > 0:
await asyncio.sleep(payment_config['delay'])
payment_data = {
'amount': payment_config['amount'],
'currency': 'USD',
'user_id': payment_config['user_id'],
'payment_method': 'credit_card'
}
result = await payment_processor.process_payment(payment_data)
if scenario['expected_trigger']:
assert result.fraud_check_status in ['flagged', 'blocked']
else:
assert result.fraud_check_status == 'passed'
# Verify fraud detection triggered appropriately
if scenario['expected_trigger']:
assert len(fraud_alerts) > 0, f"Fraud detection failed for {scenario['name']}"
else:
assert len(fraud_alerts) == 0, f"False positive fraud detection for {scenario['name']}"Adaptive Test Strategies
Security Testing Integration
Test Data Management
Failure Analysis and Learning
Last updated

